Подключение асинхронного двигателя на 380 вольт – Как подключить электродвигатель с 380 В к однофазному или трёхфазному питанию

Содержание

Как подключить трёхфазный электродвигатель на 380 Вольт

Трехфазные электродвигатели обладают более высокой эффективностью, чем однофазные на 220 вольт. Если у Вас в доме или гараже есть ввод на 380 Вольт, тогда обязательно покупайте компрессор или станок с трехфазным электродвигателем.

Это обеспечит более стабильную и экономичную работу устройств. Для пуска мотора не понадобятся различные пусковые устройства и обмотки, потому что вращающееся магнитное поле возникает в статоре сразу после подключения к электросети 380 Вольт.

Выбор схемы включения электродвигателя

Схемы подключения 3-х фазных двигателей при помощи магнитных пускателей Я подробно описывал в прошлых статьях: «Схема подключения электромоторов с тепловым реле» и «Схема реверсивного пуска«.

Подключить трех фазный двигатель возможно и в сеть 220 Вольт с использованием конденсаторов по этой схеме. Но будет значительное падение мощности и эффективности его работы.

В статоре асинхронного двигателя на 380 В расположены три отдельные обмотки, которые соединяются между собой в треугольник или звезду и к трем лучам или вершинам подключаются 3 разноименные фазы.

Вы должны учитывать, что при подключении звездой пуск будет плавным, но для того что бы достичь полной мощности необходимо подключить мотор треугольником. При этом мощность возрастет в 1.5 раза, но ток при запуске мощных или средних моторов будет очень высоким, и да же может повредить изоляцию обмоток.

Перед подключением электродвигателя ознакомьтесь с его характеристиками в паспорте и на шильдике. Особенно это важно при подключении 3 фазных электродвигателей западно-европейского производства, которые рассчитаны на работу  от сети напряжением 400/690. Пример такого шильдика на картинке снизу.  Такие моторы подключаются только по схеме «треугольник» к нашей электросети. Но многие монтажники подключают их аналогично отечественным в «звезду» и электромоторы при этом сгорают, особенно быстро под нагрузкой.

На практике все электродвигатели отечественного производства

на 380 Вольт подключаются звездой. Пример на картинке.  В очень редких случаях на производстве для того что бы, выжать всю мощность используется комбинированная схема включения звезда-треугольник. Об этом подробно узнаете в самом конце статьи.

Схема подключения электродвигателя звезда треугольник

В некоторых наших электромоторах выходит всего 3 конца из статора с обмотками- это означает, что уже внутри двигателя собрана звезда. Вам только остается подключить к ним 3 фазы. А для того, что бы собрать звезду необходимы оба конца, каждой обмотки или 6 выводов.

Нумерация концов обмоток на схемах идет слева направо. К номерам 4, 5 и 6 подключаются 3 фазы А-В-С от электросети.

При соединении звездой трёхфазного электродвигателя начала его обмоток статора соединяются вместе в одной точке, а к концам обмоток подключаются 3 фазы электропитания на 380 Вольт.

При соединении треугольником статорные обмотки между собой соединяются последовательно. Практически, необходимо соединить конец одной обмотки с началом следующей. К трем точкам соединения их между собой подключаются 3 фазы питания.

Подключение схемы звезда-треугольник

Для подключения мотора по  довольно редкой схеме  звезды при запуске, с последующим переводом для работы в рабочем режиме в схему треугольника. Так Мы сможем выжать максимум мощности, но получается довольно сложная схема без возможности реверсирования или изменения направления вращения.

Для работы схемы необходимы 3 пускателя. На первый К1 подключено электропитание с одной стороны, а с другой — концы обмоток статора. Их же начала подключены к К2 и К3. С пускателя К2 начала обмоток подключаются соответственно на другие фазы по схеме треугольник. При включении К3 все 3 фазы закорачиваются между собой и получается схема работы звездой.

Внимание, одновременно не должны включаться магнитные пускатели К2 и К3, а то произойдет произойдет аварийное отключение автомата защиты из-за возникновения межфазного короткого замыкания. Поэтому и делается электрическая блокировка между ними- при включении одного из них размыкается блок контактами цепь управления другого.

Схема работает следующим образом. При включении пускателя К1 реле времени включает К3 и двигатель запускается по схеме звезда. По истечении заданного промежутка, достаточного для полного запуска двигателя реле времени отключает пускатель К3 и включает К2. Мотор переходит на работу обмоток по схеме треугольник.

Отключение происходит пускателем К1. При повторном запуске все снова повторяется.

olimp23.com

Как подключить асинхронный двигатель

С момента изобретения асинхронного двигателя появились различные вариации его исполнения. Но способы подключения остались прежними. Наиболее популярны две схемы: звезда и треугольник. Рассмотрим преимущества и недостатки каждой из них. Выясним, какой метод подключения оптимален.

Подключение звездой

При соединении обмоток статора асинхронного двигателя по схеме «звезда их концы объединяют в одной точке. При питании от трехфазной электролинии вольтаж подается на их начала.

Способ подходит для подключения трехфазных двигателей к трехфазной линии по большему напряжению. Например:

  • Двигатель 380 к сети 380 Вольт;
  • Двигатель 220В к сети под напряжением 220 единиц;
  • Двигатель 127 220В к сети 220 Вольт;
  • Двигатель 220 380 к сети 380 Вольт.

Преимущество метода заключается в плавном запуске мотора и его мягкой работе. Это благоприятно сказывается на его эксплуатационном сроке. Но в этом кроется недостаток: схема «звезда» несет потери по мощности в полтора раза по сравнению с подключением способом «треугольник».

Остается вопрос: можно ли, и если да, то, как подключить асинхронный двигатель на 220 или 127 Вольт (низшие значения вольтажа из двух номинальных) звездой? Да, можно. Но это будет невыгодно из-за высокой потери мощности, которая прямо пропорциональна подающемуся напряжению и зависит от способа включения. Поэтому потери мощности по специфике соединения будут сочетаться с потерями по вольтажу (вместо 380 Вольт будет 220В).

Подключение треугольником

Схема «треугольник» отличается от предыдущей тем, что обмотки соединяются последовательно. Тогда конец первой обмотки соединяется с началом второй, конец которой – с началом третьей, вывод которой – с началом первой.

Преимущество способа заключается в том, что он обеспечивает достижение максимальной мощности. Но при запуске двигателя образуются высокие пусковые токи, которые могут привести к уничтожению изоляции. Поэтому не рекомендуется подавать высокое напряжение.

Треугольное соединение используется для подключения однофазного двигателя к однофазной сети 127 или 220 Вольт. Она же применяется для трехфазных электродвигателей с двумя номинальными напряжениями при включении в однофазную сеть (только на меньшее значение):

  • Мотор 220 380 к сети с напряжением 220 Вольт;
  • Мотор 127 220В к сети с вольтажом 127 единиц.

Внимание! Существуют трехфазные электросети: 600, 380, 220 и 127 Вольт. Но к бытовым из них относят только с напряжением в 380. А 220 в быту относится к однофазным линиям. Поэтому наибольшее распространение получили моторы 220/380В, которые можно подключить как в городе, так и в частном доме.

С технической точки зрения для высокого значения номинального напряжения схема «треугольник» тоже подходит. Но ввиду высоких пусковых токов это нецелесообразно и очень опасно: изоляция сгорит от тепла, выделяемого обмоткой.

Подключение методом «звезда-треугольник»

Для продолжительной эксплуатации электродвигателя важен мягкий запуск, а для высокой производительности – большая мощность. Для того чтобы сочетать преимущества описанных выше способов соединения обмоток, была разработана новая схема: треугольник-звезда. Она подходит для высокомощных моторов от 5 кВт.

Для подключения электродвигателя таким способом понадобится реле времени. Технически управление выглядит следующим образом:

  1. Через реле времени К1 и контакт К2 на участке электроцепи контактора, обозначаемого К3, подается оперативное напряжение;
  2. Контактор К3 замыкается, но размыкается контакт К3 на части электроцепи контактора, условно обозначаемого К2 для блокировки ошибочного включения. Одновременно в электроцепи контактора К1, совмещенного с клеммами временного реле, включается контакт К3;
  3. При подключении контактора К1 замыкается контакт К1, расположенный на участке электроцепи с его катушкой. Тут же срабатывает реле времени, которое разъединяет контакт К1 на участке цепи с катушкой контактора К3, но соединяет его с катушкой контактора, обозначаемого на схеме К2;
  4. Контактор К3 выключается, а контакт К3, расположенный на части цепи, где находится катушка второго контактора К2, замыкается;
  5. Включается контактор К2, но контакт К2 на участке третьего контактора К3 размыкается в целях блокировки ошибочного включения.

Описание принципа питания:

  1. После включения третьего контактора замыкается третий контакт. При этом на блоке расключения начал обмоток (БРНО) замыкаются концы обмоток по схеме «звезда»: U2, V2 и W2;
  2. После включения первого контактора замыкается первый контакт. При этом питание подается на концы обмоток: U1, V1 и W1;
  3. После срабатывания временного реле происходит переключение на соединение треугольником;
  4. Контактор третий отключается, но включается второй с замыканием второго контакта;
  5. Питание теперь подается на концы обмоток, расположенных на БРНО (U2, V2 и W2).

Описать можно простыми словами: включение в работу электродвигателя сначала происходит посредством соединения обмоточных выводов в звезду. Этим обеспечивается мягкий и плавный запуск без перегревания. Когда мотор наберет обороты, автоматические происходит переключение на треугольное соединение. Момент переведения сопровождается незначительным снижением скорости вращения. Однако она быстро восстанавливается.

Подключение многоскоростных моторов

Если работа асинхронного электродвигателя может иметь несколько режимов, отличающихся по скорости вращения ротора, то говорят, что он многоскоростной. Различают двухскоростной, трехскоростной и четырехскоростной вариант исполнения. Схемы их подключения сложные, но основываются на уже рассмотренных нами способах соединения: «звезда» и «треугольник».

Двухскоростной мотор может подключаться тремя способами:

  1. Треугольник/двойная звезда (на рисунках обозначен буквой «а»). Подходит для подключения электродвигателя, низшая частота вращения которого вдвое меньше высшей частоты (отношение 1 к 2). Схема «треугольник» активна при низких оборотах, а «двойная звезда» — при высоких;
  2. Треугольник/сдвоенная звезда с прибавочной обмоткой (на рисунках буква «б»). Схема хороша для двигателей со следующими отношениями частот: 2 к 3 и 3 к 4;
  3. Тройная звезда/тройная звезда без дополнительной обмотки (на рисунке буква «в»). Схема подходит в тех же случаях, что и треугольник/двойная звезда с использованием дополнительной обмотки.

 

 

 

 

Подключение трехскоростного асинхронного двигателя отличается лишь тем, что у такого мотора не одна, а две обмотки, которые не зависят друг от друга. Первая подключается так же, как двухскоростной мотор с одной обмоткой по схеме «а». Вторая соединяется звездой. Всего выводов – 9.

У четырехскоростного мотора тоже две независимые друг от друга обмотки. Но в отличие от трехскоростного двигателя подключение каждой обмотки производится по схеме треугольник/сдвоенная звезда.

Нахождение начал и концов обмоток

Для асинхронных электродвигателей, работающих на одной скорости, характерно наличие шести контактов для трех обмоток (по одному контакту на начало и конец для каждой из них). Если на моторе указано их предназначение, то можно сразу приступать к подсоединению. Но иногда следы меток стираются, или их нет совсем. Тогда перед подключением необходимо определить пары выводов, а также места, где намотка начинается, а где заканчивается.

Поиск парных клемм

Сначала нужно определить выводы, принадлежащие только одной обмотке. Всего получится три пары. Для этого используйте лампу и соединительные провода:

  1. Ко второму зажиму в сети подсоедините один из выводов. Свободных останется 5;
  2. Включите лампу в сеть через третий зажим;
  3. Второй конец провода соедините с одной из клемм статора;
  4. Если свечения нет, то разъедините их и подключите к другому выводу;
  5. Меняйте соединение лампы со свободными контактами до тех пор, пока не будет замечено накала в лампочке. Как только появился свет, подключенные к сети контакты статора пометьте. Это пара одной из намоток;
  6. Точно так же определите две оставшиеся пары;
  7. Пометьте каждую пару так, чтобы в последующем не приходилось вновь их искать.

Внимание! Во время работы следите, чтобы оголенные выводы намоток не касались друг друга. Иначе пары могут быть определены ошибочно.

Пометка начал обмоток и их концов

Есть два метода:

  • Трансформационный;
  • Подбор фаз.

Внимание! Для краткости: Н – начало, К – конец.

Описание метода трансформации:

  1. В одну пару включите лампу, а две оставшиеся соедините между собой последовательно, после чего подайте напряжение;
  2. Если свечения нет (рисунок б), то намотки были соединены К-Н-Н-К или Н-К-К-Н. Тогда нужно одну из намоток перевернуть, поменяв местами зажимы;
  3. Если появилось свечение (рисунок а), то на месте соединения двух пар можно смело пометить один из выводов концом, а другой – началом;
  4. Чтобы определить Н и К для обмотки, в которую включена лампа, нужно переставить ее на одну из намоток с уже определенными концами (рисунок в).

Описание способа поиска Н и К подбором фаз:

  1. Наугад попробуйте соединить двигатель звездой;
  2. Включите в сеть и следите за его работой. Если он гудит, то контакты одной из намоток поменяйте местами;
  3. Если мотор все равно гудит при работе, то верните контакты на место, но соедините с центром звезды противоположный вывод другой намотки;
  4. Если гудение пропало, то все выводы в центре – концы, а их противоположные стороны – начала. Если еще гудит, то поменяйте местами соединения третьей намотки.

Внимание! Метод подбора фаз подходит только для маломощных моторов до 5 кВт.

Однофазный мотор можно подключить только к однофазной линии. Трехфазный двигатель подходит как для однофазной, так и для трехфазной линии. Причем для однофазного подключения в сеть 127 или 220 Вольт выгодна схема «треугольник», а для линий 220 и 380 Вольт с тремя фазами – «звезда». В зависимости от технических характеристик мотора подключение может выполняться путем комбинаций этих методов.

 

 

electricdoma.ru

Подключение асинхронного двигателя к трехфазной сети

Схема подключения трехфазного электродвигателя к трехфазной сети

Всем электрикам известно, что трехфазные электродвигатели работают эффективнее, чем однофазные на 220 вольт. Поэтому если в вашем гараже проведена подводка питающего кабеля на три фазы, то оптимальный вариант – установить любой станок с мотором на 380 вольт. Это не только эффективно в плане экономичности работы, но и в плане стабильности. При этом нет необходимости добавлять в схему подключения какие-то пусковые устройства, потому что магнитное поле будет образовываться в обмотках статора сразу же после пуска двигателя. Давайте рассмотрим один вопрос, который сегодня встречается часто на форумах электриков. Вопрос звучит так: как правильно провести подключение трехфазного электродвигателя к трехфазной сети?

Схемы подключения

Начнем с того, что рассмотрим конструкцию трехфазного электродвигателя. Нас здесь будут интересовать три обмотки, которые и создают магнитное поле, вращающее ротор мотора. То есть, именно так и происходит преобразование электрической энергии в механическую.

Существует две схемы подключения:

Сразу же оговоримся, что подключение звездой делает пуск агрегата более плавным. Но при этом мощность электродвигателя будет ниже номинальной практически на 30%. В этом плане подключение треугольником выигрывает. Мощность подключенный таким образом мотор не теряет. Но тут есть один нюанс, который касается токовой нагрузке. Эта величина резко возрастает при пуске, что негативно влияет на обмотку. Высокая сила тока в медном проводе повышает тепловую энергию, которая влияет на изоляцию провода. Это может привести к пробивке изоляции и выходу из строя самого электродвигателя.

Хотелось бы обратить ваше внимание на тот факт, что большое количество европейского оборудования, завезенного на просторы России, укомплектовано европейскими электрическими двигателями, которые работают под напряжением 400/690 вольт. Кстати, снизу фото шильдика такого мотора.

Так вот эти трехфазные электродвигатели надо подключать к отечественной сети 380В только по схеме треугольник. Если подключить европейский мотор звездой, то под нагрузкой он сразу же сгорит. Отечественные же трехфазные электродвигатели к трехфазной сети подключаются по схеме звезда. Иногда подключение производят треугольником, это делается для того, чтобы выжать из мотора максимальную мощность, необходимую для некоторых видов технологического оборудования.

Производители сегодня предлагают трехфазные электродвигатели, в коробке подключения которых сделаны выводы концов обмоток в количестве трех или шести штук. Если концов три, то это значит, что на заводе внутри мотора уже сделана схема подключения звезда. Если концов шесть, то трехфазный двигатель можно подключать к трехфазной сети и звездой, и треугольником. При использовании схемы звезда необходимо три конца начала обмоток соединить в одной скрутке. Три остальных (противоположных) подключить к фазам питающей трехфазной сети 380 вольт. При использовании схемы треугольник нужно все концы соединить между собой по порядку, то есть последовательно. Фазы подключаются к трем точкам соединения концов обмоток между собой. Внизу фото, где показаны два вида подключения трехфазного двигателя.

Схема звезда-треугольник

Такая схема подключения к трехфазной сети используется достаточно редко. Но она существует, поэтому есть смысл сказать о ней несколько слов. Для чего она используется? Весь смысл такого соединения основан на позиции, что при пуске электродвигателя используется схема звезда, то есть плавный пуск, а для основной работы используется треугольник, то есть выжимается максимум мощности агрегата.

Правда, такая схема достаточно сложная. При этом обязательно устанавливаются в соединение обмоток три магнитных пускателя. Первый соединяется с питающей сетью с одной стороны, а с другой стороны к нему подсоединяются концы обмоток. Ко второму и третьему подключаются противоположные концы обмоток. Ко второму пускателю производится подсоединение треугольником, к третьему звездой.

Внимание! Одновременно включать второй и третий пускатели нельзя. Произойдет короткое замыкание между подключенными к ним фазами, что приведет к сбрасыванию автомата. Поэтому между ними устанавливается блокировка. По сути, все будет происходить так – при включении одного, размыкаются контакты у другого.

Принцип работы таков: при включении первого пускателя временное реле включает и пускатель номер три, то есть, подключенного по схеме звезда. Происходит плавный пуск электродвигателя. Реле времени задет определенный промежуток, в течение которого мотор перейдет в обычный режим работы. После чего пускатель номер три отключается, а включается второй элемент, переводя на схему треугольник.

Подключение электрического двигателя через магнитный пускатель

В принципе, схема подключения 3 фазного двигателя через магнитный пускатель практически точно такая же, как и через автомат. Просто в нее добавляется блок включения и выключения с кнопками «Пуск» и «Стоп».

Одна из фаз подключения к электродвигателю проходит через кнопку «Пуск» (она нормально замкнутая). То есть, при ее нажатии смыкаются контакты, и ток начинает поступать на электродвигатель. Но тут есть один момент. Если отпустить Пуск, то контакты разомкнуться, и ток поступать не будет по назначению. Поэтому в магнитном пускателе есть еще один дополнительный контактный разъем, который называется контактом самоподхвата. По сути, это блокировочный элемент. Он необходим для того чтобы при отжатой кнопке «Пуск» цепь подачи электроэнергии на электродвигатель не прерывалась. То есть, разъединить ее можно было бы только кнопкой «Стоп».

Что можно дополнить к теме, как подключить трехфазный двигатель к трехфазной сети через пускатель? Обратите внимание вот на какой момент. Иногда после долгой эксплуатации схемы подключения трехфазного электродвигателя кнопка «пуск» перестает работать. Основная причина – подгорели контакты кнопки, ведь при пуске двигателя появляется пусковая нагрузка с большой силой тока. Решить эту проблему можно очень просто – почистить контакты.

Как правильно провести подключение электродвигателя звездой и треугольником

  • Подключение звезда и треугольник – в чем разница?

  • Схема подключения электродвигателя на 220В через конденсатор

    Подключение трехфазного двигателя к трехфазной сети

    1. Основные схемы подключения
    2. Использование схемы «звезда-треугольник»
    3. Трехфазный двигатель с магнитным пускателем
    4. Видео

    Работа трехфазных электродвигателей считается гораздо более эффективной и производительной, чем однофазных двигателей, рассчитанных на 220 В. Поэтому при наличии трех фаз, рекомендуется подключать соответствующее трехфазное оборудование. В результате, подключение трехфазного двигателя к трехфазной сети обеспечивает не только экономичную, но и стабильную работу устройства. В схему подключения не требуется добавление каких-либо пусковых устройств, поскольку сразу же после запуска двигателя, в обмотках его статора образуется магнитное поле. Основным условием нормальной эксплуатации таких устройств является правильное выполнение подключения и соблюдение всех рекомендаций.

    Схемы подключения

    Магнитное поле, создаваемое тремя обмотками, обеспечивает вращение ротора электродвигателя. Таким образом, электрическая энергия преобразуется в механическую.

    Подключение может выполняться двумя основными способами – звездой или треугольником. Каждый из них имеет свои достоинства и недостатки. Схема звезды обеспечивает более плавный пуск агрегата, однако мощность двигателя падает примерно на 30% от номинальной. В этом случае подключение треугольником имеет определенные преимущества, поскольку потеря мощности отсутствует. Тем не менее, здесь тоже есть своя особенность, связанная с токовой нагрузкой, которая резко возрастает во время пуска. Подобное состояние оказывает негативное влияние на изоляцию проводов. Изоляция может быть пробита, а двигатель полностью выходит из строя.

    Особое внимание следует уделить европейскому оборудованию, укомплектованному электродвигателями, рассчитанными на напряжения 400/690 В. Они рекомендованы к подключению в наши сети 380 вольт только методом треугольника. В случае подключения звездой, такие двигатели сразу же сгорают под нагрузкой. Данный метод применим только к отечественным трехфазным электрическим двигателям.

    В современных агрегатах имеется коробка подключения, в которую выводятся концы обмоток. Их количество может составлять три или шесть. В первом случае схема подключения изначально предполагается методом звезды. Во втором случае электродвигатель может включаться в трехфазную сеть обоими способами. То есть, при схеме звезда три конца, расположенные в начале обмоток соединяются в общую скрутку. Противоположные концы подключаются к фазам сети 380 В, от которой поступает питание. При варианте треугольник все концы обмоток последовательно соединяются между собой. Подключение фаз осуществляется к трем точкам, в которых концы обмоток соединяются между собой.

    Использование схемы «звезда-треугольник»

    Сравнительно редко используется комбинированная схема подключения, известная как «звезда-треугольник». Она позволяет производить плавный пуск при схеме звезда, а в процессе основной работы включается треугольник, обеспечивающий максимальную мощность агрегата.

    Данная схема подключения довольно сложная, требующая использования сразу трех магнитных пускателей. устанавливаемых в соединения обмоток. Первый МП включается в сеть и с концами обмоток. МП-2 и МП-3 соединяются с противоположными концами обмоток. Подключение треугольником выполняется ко второму пускателю, а подключение звездой – к третьему. Категорически запрещается одновременное включение второго и третьего пускателей. Это приведет к короткому замыканию между фазами, подключенными к ним. Для предотвращения подобных ситуаций между этими пускателями устанавливается блокировка. Когда включается один МП, у другого происходит размыкание контактов.

    Работа всей системы происходит по следующему принципу: одновременно с включением МП-1, включается МП-3, подключенный звездой. После плавного пуска двигателя, через определенный промежуток времени, задаваемый реле, происходит переход в обычный рабочий режим. Далее происходит отключение МП-3 и включение МП-2 по схеме треугольника.

    Трехфазный двигатель с магнитным пускателем

    Подключение трехфазного двигателя с помощью магнитного пускателя, осуществляется также, как и через автоматический выключатель. Просто эта схема дополняется блоком включения и выключения с соответствующими кнопками ПУСК и СТОП.

    Одна нормально замкнутая фаза, подключенная к двигателю, соединяется с кнопкой ПУСК. Во время нажатия происходит смыкание контактов, после чего ток поступает к двигателю. Однако, следует учесть, что в случае отпускания кнопки ПУСК, контакты окажутся разомкнутыми и питание поступать не будет. Чтобы не допустить этого, магнитный пускатель оборудуется еще одним дополнительным контактным разъемом, так называемым контактом самоподхвата. Он выполняет функцию блокировочного элемента и препятствует разрыву цепи при выключенной кнопке ПУСК. Окончательно разъединить цепь можно только с помощью кнопки СТОП.

    Таким образом, подключение трехфазного двигателя к трехфазной сети может быть выполнено различными способами. Каждый из них выбирается в соответствии с моделью агрегата и конкретными условиями эксплуатации.

    Трехфазный асинхронный двигатель представляет собой устройство, состоящее из двух частей: статора и ротора, которые разделены воздушным зазором и не имеют никакой механической связи друг с другом.

    На статоре расположены три обмотки, намотанные на специальном магнитопроводе, который набран из пластин специальной электротехнической стали. Обмотки намотаны в пазах статора и расположены под углом в 120 градусов друг к другу.

    Ротор представляет собой конструкцию, опирающуюся на подшипники, имеющую крыльчатку для вентиляции. В целях электропривода ротор может иметь прямую связь с механизмом либо через редукторы или другие системы передачи механической энергии. Роторы в асинхронных машинах могут быть двух видов:

      • Короткозамкнутый ротор, который представляет собой систему проводников соединенных с торцов кольцами. Образуется пространственная конструкция, напоминающая беличье колесо. В роторе индуцируются токи, создающее свое поле, взаимодействующее с магнитным полем статора. Это и приводит в движение ротор.
      • Массивный ротор – это цельная конструкция из ферромагнитного сплава, в которой одновременно индуцируются токи и являющаяся магнитопроводом. Благодаря возникновению в массивном роторе вихревых токов идет взаимодействие магнитных полей, которое и является движущей силой ротора.

    Главной движущей силой в трехфазном асинхронном двигателе является вращающееся магнитное поле, которое возникает, во-первых, благодаря трехфазному напряжению, а, во-вторых, взаимному расположению обмоток статора. Под его воздействием в роторе возникают токи, создающее поле, которое взаимодействует с полем статора.

    Асинхронным двигатель называют из-за того, что частота вращения ротора отстает от частоты вращения магнитного поля, ротор постоянно пытается «догнать» поле, но его частота всегда меньше.

    Главные преимущества асинхронных двигателей

      • Простота конструкции, которая достигается за счет отсутствия коллекторных групп, имеющие быстрый износ и создающие дополнительное трение.
      • Для питания асинхронного двигателя не требуется дополнительных преобразований, он может питаться прямо из промышленной трехфазной сети.
      • За счет сравнительно небольшого количества деталей асинхронные двигатели очень надежны, имеют долгий срок эксплуатации, просты в техническом обслуживании и ремонте.

    Конечно, трехфазные машины не лишены недостатков

      • Асинхронные электродвигатели имеют чрезвычайно малый пусковой момент, что ограничивает сферу их применения.
      • При запуске эти двигатели потребляют большие токи при пуске, которые могут превышать допустимые в конкретной системе электроснабжения.
      • Асинхронные двигатели потребляют немалую реактивную мощность, которая не приводит к увеличению механической мощности двигателя.

    Различные схемы подключения асинхронных двигателей к сети 380 вольт

    Для того чтобы заставить работать двигатель существует несколько различных схем подключения, наиболее используемые среди них — звезда и треугольник.

    Как правильно подключить трехфазный двигатель «звездой»

    Такой способ подключения применяется в основном в трехфазных сетях с линейным напряжением 380 вольт. Концы всех обмоток: C4, C5, C6 (U2, V2, W2), — соединяются в одной точке. К началам обмоток: C1, C2, C3 (U1, V1, W1), — через аппаратуру коммутации подключаются фазные проводники A, B, C (L1, L2, L3). При этом напряжение между началами обмоток будет 380 вольт, а между местом подключения фазного проводника и местом соединения обмоток буде составлять 220 вольт.

    На табличке электродвигателя указывается возможность подключения по способу «звезда» в виде символа Y, а также может указываться и можно ли подключить по другой схеме. Соединение по такой схеме может быть с нейтралью, которая подключается к точке соединения всех обмоток.

    Такой подход позволяет эффективно защитить электродвигатель от перегрузок при помощи четырехполюсного автоматического выключателя.

    Соединение «звездой» не позволяет электродвигателю, приспособленному для сетей 380 вольт развить полную мощность в силу того, что на каждой отдельной обмотке будет напряжение в 220 вольт. Однако, такое соединение позволяет не допустить перегрузки по току, старт электродвигателя происходит плавно.

    В клеммной коробке будет сразу видно, когда электродвигатель соединен по схеме «звезда». Если есть перемычка между тремя выводами обмоток, то это однозначно говорит о том, что применяется именно эта схема. В любых других случаях применяется другая схема.

    Выполняем соединение по схеме «треугольник»

    Для того чтобы трехфазный двигатель мог развить свою максимальную паспортную мощность используют подключение, которое получило название «треугольник». При этом конец каждой обмотки соединяют с началом последующей, что в действительности образует на принципиальной схеме треугольник.

    Выводы обмоток соединяют следующим образом: C4 соединяют с C2, С5 с C3, а С6 с C1. При новой маркировке это выглядит так: U2 соединяется с V1, V2 с W1, а W2 cU1.

    В трехфазных сетях между выводами обмоток будет линейное напряжение 380 вольт, а соединение с нейтралью (рабочим нулем) не требуется. Такая схема имеет особенность еще и в том, что возникают большие пусковые токи, которые может не выдержать проводка.

    На практике иногда применяют комбинированное подключение, когда на этапе запуска и разгона используется подключение «звездой», а в рабочем режиме специальные контакторы переключают обмотки на схему «треугольник».

    В клеммной коробке подключение треугольником определяется наличием трех перемычек между клеммами обмоток. На табличке двигателя возможность подключения треугольником обозначается символом. а также может указываться мощность, развиваемая при схеме «звезда» и «треугольник».

    Трехфазные асинхронные двигатели занимают значительную часть среди потребителей электроэнергии благодаря своим очевидным достоинствам.

    Реверсивная и не реверсивная схема магнитного пускателя

    Что такое магнитный пускатель – это коммутационный аппарат, предназначенный для автоматического включения и отключения потребителей электроэнергии многократно таких, как электрокотел, электра тэна, электродвигатель и т. п.

    Магнитный пускатель позволяет осуществить дистанционное управление, включать и отключать потребителя на расстоянии с пульта управления. Самое распространенное применение магнитного пускателя получили асинхронные двигателя, при помощи его осуществляется пуск, стоп и реверс (смена направления вращение вала) двигателя.

    Еще магнитный пускатель служит для разгрузки маломощных контактов. Например, возьмем простой выключатель, который стоит дома, он рассчитан включать и отключать нагрузку не более 10 Ампер, определяем мощность: ток умножаем на напряжение 10*220 = 2200 Вт. Это значит, что через этот выключатель, можно, включить не более двадцати двух лампочек мощностью 100Вт.

    Разгрузим контакт простого выключателя с помощью магнитного пускателя третьей величины, у которого силовые контакты рассчитаны включать и отключать ток 40 Ампер, мощность, которую он сможет включать и отключать: 40*220 = 8800 Вт. В итоге сможем одним щелчком выключателя, включать и отключать всю алею уличного освещения через контакты магнитного пускателя.

    Управляется магнитный пускатель третьей величины с помощью электромагнитной катушки, которая потребляет 200Вт в момент срабатывания, а в сработанном состоянии потребляет всего 25Вт, что получается 200/380 = 0,52 А — это ток которым необходим, чтобы пускатель сработал и включил основную силовую цепь. Теперь представьте, что можно поставить маленький компактный выключатель, который будет управлять магнитным пускателем, а он своими силовыми контактами будет включать и отключать большие мощности.

    Еще у магнитного пускателя катушки управления бывают на напряжения 380В, 220В и 36В в целях безопасности человека от поражения электрическим током. На токарных станках устанавливают магнитные пускатели с катушками на 36В. Это необходимо, для того чтобы на пульте управление токарным станком было безопасное напряжение, на случай пробоя изоляции.

    Для чего нужно тепловое реле в комплекте с магнитным пускателем. Тепловое реле защищает двигатель от перегруза и от неполнофазного режима работы. Что такое неполнофазный режим – это когда при работе электродвигателя исчезла одна из трех фаз.

    Причины однофазного режима: перегорела плавкая вставка на одной фазе, подгорел контакт на клемме или выкрутился винт на клеммнике магнитного пускателя и выпал фазный провод от вибрации, плохой контакт на силовых контактах пускателя.

    При перегрузке двигателя или работе в неполнофазном режиме увеличивается ток, проходящий через тепловое реле. В тепловом реле нагреваются токопроводящие биметаллические пластины, под действием тепла они выгибаются, и механически воздействует на размыкание контакта в тепловом реле, который отключает питание катушки магнитного пускателя, происходит отключение двигателя по средствам пускателя.

    СЕМА ПОДКЛЮЧЕНИЕ АСИНХРОННОГО ДВИГАТЕЛЯ ЧЕРЕЗ МАГНИТНЫЙ ПУСКАТЕЛЬ.

    Схема состоит:
    из QF — автоматического выключателя; KM1 — магнитного пускателя; P — теплового реле; M — асинхронного двигателя; ПР — предохранителя; кнопки управления (С-стоп, Пуск). Рассмотрим работу схемы в динамике.
    Включаем питание QF — автоматическим выключателем, нажимаем кнопку «Пуск» своим нормально разомкнутым контактом подает напряжение на катушку КМ1 — магнитного пускателя.

    КМ1 – магнитный пускатель срабатывает и своими нормально разомкнутыми, силовыми контактами подает напряжение на двигатель. Для того чтобы не удерживать кнопку «Пуск», чтобы двигатель работал, нужно ее зашунтировать, нормально разомкнутым блок контактом КМ1 – магнитного пускателя.
    При срабатывании пускателя блок контакт замыкается и можно отпустить кнопку «Пуск» ток побежит через блок контакт на КМ1 — катушку.

    Отключаем двигатель, нажимаем кнопу «С – стоп», нормально замкнутый контакт размыкается и прекращается подача напряжение к КМ1 – катушке, сердечник пускателя под действием пружин возвращается в исходное положение, соответственно контакты возвращаются в нормальное состояние, отключая двигатель. При срабатывании теплового реле — «Р», размыкается нормально замкнутый контакт «Р», отключение происходит аналогично.

    Не реверсивная схема магнитного пускателя с катушкой 380В.

    РЕВЕРСИВНАЯ СХЕМА МАГНИТНОГО ПУСКАТЕЛЯ.

    Схема состоит аналогично, так же, как на не реверсивной схеме, единственно добавилась кнопка реверса и магнитный пускатель.

    Принцип работы схемы немного сложнее, рассмотрим в динамике. Что требуется от схемы, реверс двигателя за счет переворачивания местами двух фаз. При этом нужна блокировка, которая не давала бы включиться второму пускателю, если первый находится в работе и наоборот. Если включить два пускателя одновременно то произойдет КЗ – короткое замыкание на силовых контактах пускателя.

    Включаем QF – автоматический выключатель, давим кнопку «Пуск[1]» подаем напряжение на КМ1 катушку пускателя, пускатель срабатывает. Силовыми контактами включает двигатель, при этом шунтируется пусковая кнопка «Пуск [1]».

    Блокировка второго пускателя — КМ2 осуществляется, нормально замкнутым КМ1 — блок контактом. При срабатывании КМ1 — пускателя, размыкается КМ1 — блок контакт тем самым размыкает подготовленную цепочку катушки второго КМ2 — магнитного пускателя.

    Чтобы осуществить реверс двигателя, его необходимо отключить. Отключаем двигатель, нажатием кнопку «С — стоп», снимается напряжение с катушки, которая находилась в работе. Пускатель и блок контакты под действием пружин возвращаются в исходное положение.

    Схема готова к реверсу, нажимаем кнопку «Пуск[2]», подаем напряжение на катушку — КМ2, пускатель — КМ2 срабатывает и включает двигатель в противоположном вращение. Кнопка «Пуск[2]» шунтируется блок контактом — КМ2, а нормально замкнутый блок контакт КМ2 размыкается и блокирует готовность катушки магнитного пускателя — КМ1.
    При срабатывании теплового реле — «Р», размыкается нормально замкнутый контакт «Р», отключение происходит аналогично.

    Реверсивная схема магнитного пускателя с катушкой 380В.

    Принцип работы схемы магнитного пускателя с катушкой на 220В тот же, что и с катушкой на 380В.

    Не реверсивная схема магнитного пускателя с катушкой 220В.

    Реверсивная схема магнитного пускателя с катушкой 220В.

    Источники: http://onlineelektrik.ru/eoborudovanie/edvigateli/sxema-podklyucheniya-trexfaznogo-elektrodvigatelya-k-trexfaznoj-seti.html, http://electric-220.ru/news/podkljuchenie_trekhfaznogo_dvigatelja_k_trekhfaznoj_seti/2016-09-28-1073, http://elektrik.cxemy.ru/index.php/eldvig/52-asinxronnyj-dvigatel-princip-raboty-sxema-podklyucheniya-k-tryoxfaznoj-seti-380-volt.html

    electricremont.ru

    Как подключить электродвигатель с 380 В к однофазному или трёхфазному питанию

    Предположим, что в наличии есть электродвигатель на 380 в, но понадобилось подключить его к одной фазе. Учитывая, что пользователь не является электриком, для него эта процедура покажется весьма затруднительной. Но эта статья может помочь в этом деле, предоставив некоторую нужную информацию по этой теме.

    О том, как подключить двигатель 380 В на 380 В, можно будет узнать ниже. С этим трудностей возникнуть не должно. А вот с подключением трёхфазного двигателя к одной фазе могут возникнуть вопросы. Поэтому сначала будет описана именно эта процедура.

    Перед тем как осуществить подключение, следует помнить тот факт, что ожидать полной рабочей мощности от трёхфазного электродвигателя, работающего на одной фазе, не стоит. Трёхфазный двигатель вполне может работать на однофазном обеспечении, но его мощность будет равнять в лучше случае 70% от его реальной возможной мощи. К тому же будут проблемы с подбором рабочей ёмкости при постоянно меняющейся нагрузке.

    Как подключить двигатель 380 на 380

    Инструменты, которые понадобятся в процессе подключения:

    • паяльник
    • вольтметр стрелочный
    • отвёртка

    Материалы, используемые в работе:

    • электродвигатель 380
    • рабочие конденсаторы
    • пусковой конденсатор
    • кнопка пуска 220 В
    • олово
    • кислота или канифоль
    • изолента

    Подсоединение двигателя 380 В

    Осуществить подключение трёхфазного двигателя к однофазной сети можно, используя схему звезда-треугольник.

    Схема звезда-треугольник

    Во многих отечественных электродвигателях схема звезда уже собрана, что в этом случае предполагает лишь реализация треугольника. Это подразумевает подключение трёх фаз и образование звезды из оставшихся шести концов обмотки.

    Звезда-треугольник обладает очень важным достоинством. Дело в том, что при использовании данной схемы электрический двигатель реализует в работе свою максимальную мощность. Основным минусом такой схемы считается её сложность. Чаще всего такая схема используется мастерами-любителями.

    Встретить такую схему где-нибудь на производстве весьма проблематично, так как в таких условиях встречается она редко. Это обстоятельство объясняется тем, что из-за сложности схемы весьма трудно, да и бессмысленно, организовываться такое трудоёмкое соединение.

    Отличие отдельных схем звезда и треугольник заключается в том, что в первом случае используются шесть клемм подключения, в то время как во втором — три. Если брать во внимание характеристики, то можно заметить тот факт, что двигатели со звездой работают на порядок тише. Но этот плюс может быть перекрыт существенным минусом электродвигателей, работающих при таком подключении. Минус заключается в пониженной мощности работы при подключении к однофазной сети — около 50% от номинальной. Электродвигатель, подключённый к однофазной сети при использовании схемы треугольник, работает громче, но мощность ощутимо выше и составляет примерно 70% от номинальной.

    На видео ниже описан принцип подключения трёхфазного электродвигателя, используя схему треугольник.

    Как подключить электродвигатель 380 В на 220 В

    Для начала, перед подключением, следует определиться с конденсаторами. В названном подключении используется сразу два их вида:

    1. Пусковые
    2. Рабочие

    Первый тип конденсаторов будет использован для запуска двигателя. И только для этого. Когда двигатель наберёт необходимое количество оборотов пусковые конденсаторы исключаются из электроцепи. Если этого не произойдёт, это приведёт к серьёзным последствиям. Иначе говоря, это повлечёт за собой то, что двигатель просто сгорит в результате перекоса по току в двух обмотках электродвигателя.

    Основная работа предназначена для рабочих конденсаторов. Для того чтобы конденсатор работал исправно и долго, то следует придерживаться трёх очень важных правил, которые помогут обеспечить эффективную работу рабочих конденсаторов:

    1. Все рабочие конденсаторы должны быть подключены между собой только параллельно.
    2. Общую ёмкость рабочих конденсатором следует определять специальным отношением: на 100 Вт мощности электродвигателя 7 микрофарад рабочего конденсатора.
    3. Номинальное напряжение каждого конденсатора — не меньше 300 Вольт.
    4. Следуя этим правилам, можно намного продлить работу рабочих конденсаторов и не только их. Работа и долговечность двигателя также зависит от работы и эксплуатации конденсаторов при включении оных в электроцепь. В лучшем случае двигатель прекратит работу в рамках одного процесса либо вовсе не начнёт в случае неправильного подключения. В худшем случае электродвигатель сгорит и пользователю придётся ломать голову насчёт того, как восполнить потерю.

    Очень важно знать, что ёмкость пусковых конденсаторов обязательно должна быть больше ёмкости рабочих конденсаторов в три раза.

    Следует учитывать, что расчёт ёмкости конденсаторов производится на мощность номинальную, поэтому, если двигатель будет работать недогруженным, то он будет греться и потребуется уменьшить ёмкость рабочего конденсатора для того, чтобы уменьшить ток в обмотке.

    В случае если ёмкость будет меньше, чем требуется, то мощность, которую будет развивать электродвигатель, будет низкой.

    Следует помнить, что конденсаторы даже после отключения сохраняют на своих выводах опасное напряжение. Чтобы исключить случайные прикосновения, следует всегда делать ограждения вокруг конденсаторов. Рекомендуется всегда проводить разрядку конденсатором перед тем, как начать с ними работу.

    Нельзя забывать, что подключение трёхфазного двигателя мощностью 3 Квт дома к стандартной проводке категорически запрещено. Такое подключение приведёт к выбиванию пробок и автоматов. Также возможно будет плавиться изоляция на более старых проводах или в случаях с неправильно подобранной защиты по току.

    Схема подключения

    1. Для начала следует соединить конденсаторы. Как было указано выше, делать это следует, соединяя их параллельно. Это очень важный момент.
    2. Затем нужно подсоединить связку конденсаторов двумя проводами к электродвигателю и к сети переменного тока.
    3. На третьем этапе следует просто включить движок. Это нужно сделать для того, чтобы для начала проверить в ту ли сторону он крутится. Если в ту, что требуется, то никаких больше действий предпринимать не надо. Подключение произведено. В противном случае следует выполнить несложные манипуляции с проводами, а именно следует поменять местами провода подключения к обмотке.

    Для более понятного и наглядного объяснения всего процесса подключения ниже можно ознакомиться с приложенным видео. Эта подробная видеоинструкция поможет разобраться во всём процессе и во всех моментах, непонятных читателю:

    Выводы

    Подключение трёхфазного электродвигателя как к однофазной сети, так и трёхфазной, в принципе не составляет большого труда, особенно если существует большое количество схем, инструкций и видеоматериалов по данной теме.

    Одним из главных моментов при осуществлении подключения двигателя к сети электропитания является соблюдение мер безопасности. Следует всегда помнить о том, что все манипуляции с сетями, по которым проходит ток — уже определённый риск. Так что следует избегать все контакты с элементами, которые находятся под напряжением.

    Если существуют некоторые опасения и сомнения насчёт осуществления всей процедуры, а опыта нет, следует проконсультироваться с профессионалом во избежание поломки оборудования и получения физических травм, так как лучше всё-таки не рисковать своим здоровьем.

    Оцените статью: Поделитесь с друзьями!

    elektro.guru

    Подключение трехфазного двигателя к трехфазной сети — studvesna73.ru

    Трёхфазные электродвигатели получили большое распространение как в промышленном использовании, так и в личных целях благодаря тому что они значительно эффективнее двигателей для обычной двухфазной сети.

    Принцип действия трёхфазного двигателя

    Трехфазный асинхронный двигатель представляет собой устройство, состоящее из двух частей: статора и ротора, которые разделены воздушным зазором и не имеют никакой механической связи друг с другом.

    На статоре расположены три обмотки, намотанные на специальном магнитопроводе, который набран из пластин специальной электротехнической стали. Обмотки намотаны в пазах статора и расположены под углом в 120 градусов друг к другу.

    Ротор представляет собой конструкцию, опирающуюся на подшипники, имеющую крыльчатку для вентиляции. В целях электропривода ротор может иметь прямую связь с механизмом либо через редукторы или другие системы передачи механической энергии. Роторы в асинхронных машинах могут быть двух видов:

      • Короткозамкнутый ротор, который представляет собой систему проводников соединенных с торцов кольцами. Образуется пространственная конструкция, напоминающая беличье колесо. В роторе индуцируются токи, создающее свое поле, взаимодействующее с магнитным полем статора. Это и приводит в движение ротор.
      • Массивный ротор – это цельная конструкция из ферромагнитного сплава, в которой одновременно индуцируются токи и являющаяся магнитопроводом. Благодаря возникновению в массивном роторе вихревых токов идет взаимодействие магнитных полей, которое и является движущей силой ротора.

    Главной движущей силой в трехфазном асинхронном двигателе является вращающееся магнитное поле, которое возникает, во-первых, благодаря трехфазному напряжению, а, во-вторых, взаимному расположению обмоток статора. Под его воздействием в роторе возникают токи, создающее поле, которое взаимодействует с полем статора.

    Асинхронным двигатель называют из-за того, что частота вращения ротора отстает от частоты вращения магнитного поля, ротор постоянно пытается «догнать» поле, но его частота всегда меньше.

    Главные преимущества асинхронных двигателей

      • Простота конструкции, которая достигается за счет отсутствия коллекторных групп, имеющие быстрый износ и создающие дополнительное трение.
      • Для питания асинхронного двигателя не требуется дополнительных преобразований, он может питаться прямо из промышленной трехфазной сети.
      • За счет сравнительно небольшого количества деталей асинхронные двигатели очень надежны, имеют долгий срок эксплуатации, просты в техническом обслуживании и ремонте.

    Конечно, трехфазные машины не лишены недостатков

      • Асинхронные электродвигатели имеют чрезвычайно малый пусковой момент, что ограничивает сферу их применения.
      • При запуске эти двигатели потребляют большие токи при пуске, которые могут превышать допустимые в конкретной системе электроснабжения.
      • Асинхронные двигатели потребляют немалую реактивную мощность, которая не приводит к увеличению механической мощности двигателя.

    Различные схемы подключения асинхронных двигателей к сети 380 вольт

    Для того чтобы заставить работать двигатель существует несколько различных схем подключения, наиболее используемые среди них — звезда и треугольник.

    Как правильно подключить трехфазный двигатель «звездой»

    Такой способ подключения применяется в основном в трехфазных сетях с линейным напряжением 380 вольт. Концы всех обмоток: C4, C5, C6 (U2, V2, W2), — соединяются в одной точке. К началам обмоток: C1, C2, C3 (U1, V1, W1), — через аппаратуру коммутации подключаются фазные проводники A, B, C (L1, L2, L3). При этом напряжение между началами обмоток будет 380 вольт, а между местом подключения фазного проводника и местом соединения обмоток буде составлять 220 вольт.

    На табличке электродвигателя указывается возможность подключения по способу «звезда» в виде символа Y, а также может указываться и можно ли подключить по другой схеме. Соединение по такой схеме может быть с нейтралью, которая подключается к точке соединения всех обмоток.

    Такой подход позволяет эффективно защитить электродвигатель от перегрузок при помощи четырехполюсного автоматического выключателя.

    Соединение «звездой» не позволяет электродвигателю, приспособленному для сетей 380 вольт развить полную мощность в силу того, что на каждой отдельной обмотке будет напряжение в 220 вольт. Однако, такое соединение позволяет не допустить перегрузки по току, старт электродвигателя происходит плавно.

    В клеммной коробке будет сразу видно, когда электродвигатель соединен по схеме «звезда». Если есть перемычка между тремя выводами обмоток, то это однозначно говорит о том, что применяется именно эта схема. В любых других случаях применяется другая схема.

    Выполняем соединение по схеме «треугольник»

    Для того чтобы трехфазный двигатель мог развить свою максимальную паспортную мощность используют подключение, которое получило название «треугольник». При этом конец каждой обмотки соединяют с началом последующей, что в действительности образует на принципиальной схеме треугольник.

    Выводы обмоток соединяют следующим образом: C4 соединяют с C2, С5 с C3, а С6 с C1. При новой маркировке это выглядит так: U2 соединяется с V1, V2 с W1, а W2 cU1.

    В трехфазных сетях между выводами обмоток будет линейное напряжение 380 вольт, а соединение с нейтралью (рабочим нулем) не требуется. Такая схема имеет особенность еще и в том, что возникают большие пусковые токи, которые может не выдержать проводка.

    На практике иногда применяют комбинированное подключение, когда на этапе запуска и разгона используется подключение «звездой», а в рабочем режиме специальные контакторы переключают обмотки на схему «треугольник».

    В клеммной коробке подключение треугольником определяется наличием трех перемычек между клеммами обмоток. На табличке двигателя возможность подключения треугольником обозначается символом Δ, а также может указываться мощность, развиваемая при схеме «звезда» и «треугольник».

    Трехфазные асинхронные двигатели занимают значительную часть среди потребителей электроэнергии благодаря своим очевидным достоинствам.

    Наглядное и простое объяснение принципа работы в видео

    Тема: какими способами делают подключение 3х фаз. двигетеля к 3х фаз. сети.

    Возможно не все знают, что существует несколько способов подключения трёхфазного асинхронного электродвигателя к трёхфазной сети. Давайте с Вами их разберём и посмотрим на те достоинства и недостатки, которыми они обладают. Итак, есть такие варианты подключения — прямой пуск, пуск по схеме звезда/треугольник, пуск электродвигателя через устройство плавного пуска и запуск его через частотный преобразователь (частотник, векторный преобразователь, частотный преобразователь, частотный инвертор).

    Самым простым типом подключения трёхфазного двигателя к сети с тремя фазами является схема прямого пуска. В данном способе подключения берутся просто три провода, идущие от электродвигателя через переключающее устройство (автоматический выключатель, контактор, магнитный пускатель) подсоединяются к питающей трёхфазной электрической сети. К достоинству этого варианта подключения электродвигателя относится его простота и дешевизна (нужно минимум дополнительных устройств). К минусам можно отнести тот факт, что при таком соединении в момент включения двигателя возникает эффект токовой перегрузки по причине больших пусковых токов (в момент старта они в 7 раз превышают номинальное значение). При небольших мощностях электродвигателя (примерно до 4 кВт) этот негативный эффект не приносит больших неприятностей, а вот уже свыше 4 кВт, лучше этот феномен исключать.

    Классическим способом (типом) подключения трёхфазного двигателя к трёхфазной сети является вариант звезда/треугольник. То есть, как известно обмотки асинхронного электродвигателя можно подключить по схеме звезды и по схеме треугольника. Когда подключение происходит по схеме звезда, при номинальном напряжении мощность двигателя равна 0.59 (от 1). То есть, она меньше возможной мощности этого движка. Когда мы электрический двигатель (его обмотки) включаем по схеме треугольника, то в этом случае движёк выдаёт полную свою мощность.

    Следовательно, что бы избежать больших пусковых токов при старте движка мы сначала включаем электродвигатель по схеме звезды, а когда он наберёт нужные обороты, переключаем схему на треугольник, что позволит сделать более плавный пуск, а после выйти на свои полные обороты и мощность. При таком типе подключения трёхфазного электрического двигателя к трёхфазной сети используется более сложная схема (следовательно и дополнительных устройств управления будет больше, что скажется на общей стоимости данной схемы подключения).

    Третьим способом подключения электродвигателя к сети (трёхфазной) будет вариант с использованием плавного пуска. Плавный пуск представляет собой симисторное устройство, которое не позволяет в момент пуска движка нарастать току. Естественно, это рациональный вариант подключения электродвигателя, но оно и по стоимости будет дороже обходиться чем применение вышеописанных вариантов.

    Ну и наиболее дорогостоящий, но и наиболее лучший способ подключения трёхфазного двигателя к трёхфазной сети будет с использованием преобразователя частоты, которое также называют частотниками, инверторами частоты, векторными преобразователями. Его применение имеет массу преимуществ. Он способен в полном диапазоне частоты вращения электродвигателя регулировать обороты. При чём содержит в себе много режимов работы, имеет управление через внешние электронные и информационные системы. Само собой частотник содержит все защиты от токовых перегрузок, коротких замыканий, неправильного подключения фаз и т.д. Если нет ограничений на бюджет, это самый лучший вариант способа подключения двигателя к трёхфазной электрической сети.

    P.S. Как видно каждый тип подключения имеет свои достоинства и недостатки. И всё в основном упирается именно в бюджет, ну и в целесообразность, конечно же. При небольших мощностях электродвигателя дешевле использовать простое прямое включение. Что бы избежать чрезмерных пусковых токов, применяйте схему звезда/треугольник. Если позволяют денежные средства, ставьте плавные пуски и частотные преобразователи.

    1. Основные схемы подключения
    2. Использование схемы «звезда-треугольник9raquo;
    3. Трехфазный двигатель с магнитным пускателем
    4. Видео

    Работа трехфазных электродвигателей считается гораздо более эффективной и производительной, чем однофазных двигателей, рассчитанных на 220 В. Поэтому при наличии трех фаз, рекомендуется подключать соответствующее трехфазное оборудование. В результате, подключение трехфазного двигателя к трехфазной сети обеспечивает не только экономичную, но и стабильную работу устройства. В схему подключения не требуется добавление каких-либо пусковых устройств, поскольку сразу же после запуска двигателя, в обмотках его статора образуется магнитное поле. Основным условием нормальной эксплуатации таких устройств является правильное выполнение подключения и соблюдение всех рекомендаций.

    Схемы подключения

    Магнитное поле, создаваемое тремя обмотками, обеспечивает вращение ротора электродвигателя. Таким образом, электрическая энергия преобразуется в механическую.

    Подключение может выполняться двумя основными способами – звездой или треугольником. Каждый из них имеет свои достоинства и недостатки. Схема звезды обеспечивает более плавный пуск агрегата, однако мощность двигателя падает примерно на 30% от номинальной. В этом случае подключение треугольником имеет определенные преимущества, поскольку потеря мощности отсутствует. Тем не менее, здесь тоже есть своя особенность, связанная с токовой нагрузкой, которая резко возрастает во время пуска. Подобное состояние оказывает негативное влияние на изоляцию проводов. Изоляция может быть пробита, а двигатель полностью выходит из строя.

    Особое внимание следует уделить европейскому оборудованию, укомплектованному электродвигателями, рассчитанными на напряжения 400/690 В. Они рекомендованы к подключению в наши сети 380 вольт только методом треугольника. В случае подключения звездой, такие двигатели сразу же сгорают под нагрузкой. Данный метод применим только к отечественным трехфазным электрическим двигателям.

    В современных агрегатах имеется коробка подключения, в которую выводятся концы обмоток. Их количество может составлять три или шесть. В первом случае схема подключения изначально предполагается методом звезды. Во втором случае электродвигатель может включаться в трехфазную сеть обоими способами. То есть, при схеме звезда три конца, расположенные в начале обмоток соединяются в общую скрутку. Противоположные концы подключаются к фазам сети 380 В, от которой поступает питание. При варианте треугольник все концы обмоток последовательно соединяются между собой. Подключение фаз осуществляется к трем точкам, в которых концы обмоток соединяются между собой.

    Использование схемы «звезда-треугольник9raquo;

    Сравнительно редко используется комбинированная схема подключения, известная как «звезда-треугольник9raquo;. Она позволяет производить плавный пуск при схеме звезда, а в процессе основной работы включается треугольник, обеспечивающий максимальную мощность агрегата.

    Данная схема подключения довольно сложная, требующая использования сразу трех магнитных пускателей. устанавливаемых в соединения обмоток. Первый МП включается в сеть и с концами обмоток. МП-2 и МП-3 соединяются с противоположными концами обмоток. Подключение треугольником выполняется ко второму пускателю, а подключение звездой – к третьему. Категорически запрещается одновременное включение второго и третьего пускателей. Это приведет к короткому замыканию между фазами, подключенными к ним. Для предотвращения подобных ситуаций между этими пускателями устанавливается блокировка. Когда включается один МП, у другого происходит размыкание контактов.

    Работа всей системы происходит по следующему принципу: одновременно с включением МП-1, включается МП-3, подключенный звездой. После плавного пуска двигателя, через определенный промежуток времени, задаваемый реле, происходит переход в обычный рабочий режим. Далее происходит отключение МП-3 и включение МП-2 по схеме треугольника.

    Трехфазный двигатель с магнитным пускателем

    Подключение трехфазного двигателя с помощью магнитного пускателя, осуществляется также, как и через автоматический выключатель. Просто эта схема дополняется блоком включения и выключения с соответствующими кнопками ПУСК и СТОП.

    Одна нормально замкнутая фаза, подключенная к двигателю, соединяется с кнопкой ПУСК. Во время нажатия происходит смыкание контактов, после чего ток поступает к двигателю. Однако, следует учесть, что в случае отпускания кнопки ПУСК, контакты окажутся разомкнутыми и питание поступать не будет. Чтобы не допустить этого, магнитный пускатель оборудуется еще одним дополнительным контактным разъемом, так называемым контактом самоподхвата. Он выполняет функцию блокировочного элемента и препятствует разрыву цепи при выключенной кнопке ПУСК. Окончательно разъединить цепь можно только с помощью кнопки СТОП.

    Таким образом, подключение трехфазного двигателя к трехфазной сети может быть выполнено различными способами. Каждый из них выбирается в соответствии с моделью агрегата и конкретными условиями эксплуатации.

    Различают несколько типов электродвигателей – трехфазные и однофазные. Главное отличие трехфазных электродвигателей от однофазных заключается в том, что они более производительные. Если у вас дома есть розетка на 380 В, то лучше всего купить оборудование с трехфазным электродвигателем.

    Использование такого типа двигателя позволит вам сэкономить на электроэнергии и получить прирост мощности. Также вам не придется использовать различные устройства для запуска двигателя, так как благодаря напряжению в 380 В вращающее магнитное поле появляется сразу после подключения в электросеть.

    Схемы подключения электродвигателя на 380 вольт

    Если у вас нет сети на 380 В, то вы все равно сможете подключить трехфазный электродвигатель в стандартную электросеть на 220 В. Для этого вам понадобиться конденсаторы, которые нужно подключить по данной схеме. Но при подключении в обычную электросеть вы будете наблюдать потерю мощности. Об этом бы можете почитать здесь .

    Электродвигатели на 380 В устроены таким образом, что в статоре у них есть три обмотки, которые соединяются по типу треугольника или звезды и уже к их вершинам осуществляется подключение трех различных фаз.

    Нужно помнить, что, используя подключение по типу звезды, ваш электродвигатель не будет работать на полную мощность, но зато его запуск будет плавным. При использовании схемы треугольник вы получите прирост мощности по сравнению со звездой в полтора раза, но при таком подключении возрастает шанс повредить обмотку при запуске.

    Перед использованием электродвигателя нужно в первую очередь ознакомиться с его характеристиками. Все необходимые сведения можно найти в техпаспорте и на шильдике двигателя. Особое внимание следует обратить на трех фазные двигатели западноевропейского образца, так как они предназначены для работы от напряжения в 400 или 690 вольт. Для того, чтобы подключить такой электродвигатель к отечественным сетям, необходимо использовать только подключение по типу треугольник.

    Но в большинстве случаев при монтаже брезгуют этим правилом и подключают по типу звезда, и вследствие этого большинство электромоторов сгорают под нагрузкой. Что касается отечественных электродвигателей, рассчитанных на напряжение в 380 В, то их следует подключать звездой. Также бывает комбинированное подключение, для того чтобы получить максимум мощности, но это встречается крайне редко.

    Подключение электродвигателя по схеме звезда и треугольник

    Некоторые отечественные электродвигатели собираются по типу звезды, это легко определить по трем концам, которые выходят из статора. И чтобы начать работать нужно всего лишь присоединить к этим концам три фазы. Если вы хотите собрать звезду, то вам необходимы два конца, каждой обмотки или шесть выводов.

    На схемах обычно концы обмотки нумеруются с лева на право. Поэтому к номерам 4,5 и 6 нужно подключать фазы A, B и С. Для того, чтобы запустить электродвигатель по схеме звезда, необходимо обмотки статора соединить в одной точке и к концам подключить три фазы от сети в 380 В.

    Если вы хотите сделать схему треугольник, то вам необходимо соединить обмотки последовательно. Нужно соединить конец одной обмотки с началом следующей и затем к трем местам соединений нужно подключить три фазы электросети.
    Подключение схемы звезда-треугольник.

    Благодаря этой схеме мы можем получить максимальную мощность, но у нас не будет возможности изменить направление вращения. Для того, чтобы схема заработала будут нужны три пускателя. На первый (К1) с одной стороны подключается питание, а с другой подключаются концы обмоток. К К2 и к К3 подключаются их начала. С пускателя К2 начала обмоток присоединяются на другие фазы по типу соединения треугольник. Когда К3 включается, то все три фазы закорачиваются и, в итоге, электродвигатель работает по схеме звезда.

    Важно, чтобы К2 и К3 не запускались одновременно, так ка это может привести к аварийному отключению. Данная схема работает следующим образом. При запуске К1 реле временно включает К3 и запуск двигателя происходит по типу звезда. После запуска двигателя отключается К3 и запускается К2. И электромотор начинает работать по схеме треугольник. Прекращение работы происходит путем отключения К1.

    Еще статьи по теме

    Трехфазный асинхронный двигатель представляет собой устройство, состоящее из двух частей: статора и ротора, которые разделены воздушным зазором и не имеют никакой механической связи друг с другом.

    На статоре расположены три обмотки, намотанные на специальном магнитопроводе, который набран из пластин специальной электротехнической стали. Обмотки намотаны в пазах статора и расположены под углом в 120 градусов друг к другу.

    Ротор представляет собой конструкцию, опирающуюся на подшипники, имеющую крыльчатку для вентиляции. В целях электропривода ротор может иметь прямую связь с механизмом либо через редукторы или другие системы передачи механической энергии. Роторы в асинхронных машинах могут быть двух видов:

      • Короткозамкнутый ротор, который представляет собой систему проводников соединенных с торцов кольцами. Образуется пространственная конструкция, напоминающая беличье колесо. В роторе индуцируются токи, создающее свое поле, взаимодействующее с магнитным полем статора. Это и приводит в движение ротор.
      • Массивный ротор – это цельная конструкция из ферромагнитного сплава, в которой одновременно индуцируются токи и являющаяся магнитопроводом. Благодаря возникновению в массивном роторе вихревых токов идет взаимодействие магнитных полей, которое и является движущей силой ротора.

    Главной движущей силой в трехфазном асинхронном двигателе является вращающееся магнитное поле, которое возникает, во-первых, благодаря трехфазному напряжению, а, во-вторых, взаимному расположению обмоток статора. Под его воздействием в роторе возникают токи, создающее поле, которое взаимодействует с полем статора.

    Асинхронным двигатель называют из-за того, что частота вращения ротора отстает от частоты вращения магнитного поля, ротор постоянно пытается «догнать» поле, но его частота всегда меньше.

    Главные преимущества асинхронных двигателей

      • Простота конструкции, которая достигается за счет отсутствия коллекторных групп, имеющие быстрый износ и создающие дополнительное трение.
      • Для питания асинхронного двигателя не требуется дополнительных преобразований, он может питаться прямо из промышленной трехфазной сети.
      • За счет сравнительно небольшого количества деталей асинхронные двигатели очень надежны, имеют долгий срок эксплуатации, просты в техническом обслуживании и ремонте.

    Конечно, трехфазные машины не лишены недостатков

      • Асинхронные электродвигатели имеют чрезвычайно малый пусковой момент, что ограничивает сферу их применения.
      • При запуске эти двигатели потребляют большие токи при пуске, которые могут превышать допустимые в конкретной системе электроснабжения.
      • Асинхронные двигатели потребляют немалую реактивную мощность, которая не приводит к увеличению механической мощности двигателя.

    Различные схемы подключения асинхронных двигателей к сети 380 вольт

    Для того чтобы заставить работать двигатель существует несколько различных схем подключения, наиболее используемые среди них — звезда и треугольник.

    Как правильно подключить трехфазный двигатель «звездой»

    Такой способ подключения применяется в основном в трехфазных сетях с линейным напряжением 380 вольт. Концы всех обмоток: C4, C5, C6 (U2, V2, W2), — соединяются в одной точке. К началам обмоток: C1, C2, C3 (U1, V1, W1), — через аппаратуру коммутации подключаются фазные проводники A, B, C (L1, L2, L3). При этом напряжение между началами обмоток будет 380 вольт, а между местом подключения фазного проводника и местом соединения обмоток буде составлять 220 вольт.

    На табличке электродвигателя указывается возможность подключения по способу «звезда» в виде символа Y, а также может указываться и можно ли подключить по другой схеме. Соединение по такой схеме может быть с нейтралью, которая подключается к точке соединения всех обмоток.

    Такой подход позволяет эффективно защитить электродвигатель от перегрузок при помощи четырехполюсного автоматического выключателя.

    Соединение «звездой» не позволяет электродвигателю, приспособленному для сетей 380 вольт развить полную мощность в силу того, что на каждой отдельной обмотке будет напряжение в 220 вольт. Однако, такое соединение позволяет не допустить перегрузки по току, старт электродвигателя происходит плавно.

    В клеммной коробке будет сразу видно, когда электродвигатель соединен по схеме «звезда». Если есть перемычка между тремя выводами обмоток, то это однозначно говорит о том, что применяется именно эта схема. В любых других случаях применяется другая схема.

    Выполняем соединение по схеме «треугольник»

    Для того чтобы трехфазный двигатель мог развить свою максимальную паспортную мощность используют подключение, которое получило название «треугольник». При этом конец каждой обмотки соединяют с началом последующей, что в действительности образует на принципиальной схеме треугольник.

    Выводы обмоток соединяют следующим образом: C4 соединяют с C2, С5 с C3, а С6 с C1. При новой маркировке это выглядит так: U2 соединяется с V1, V2 с W1, а W2 cU1.

    В трехфазных сетях между выводами обмоток будет линейное напряжение 380 вольт, а соединение с нейтралью (рабочим нулем) не требуется. Такая схема имеет особенность еще и в том, что возникают большие пусковые токи, которые может не выдержать проводка.

    На практике иногда применяют комбинированное подключение, когда на этапе запуска и разгона используется подключение «звездой», а в рабочем режиме специальные контакторы переключают обмотки на схему «треугольник».

    В клеммной коробке подключение треугольником определяется наличием трех перемычек между клеммами обмоток. На табличке двигателя возможность подключения треугольником обозначается символом. а также может указываться мощность, развиваемая при схеме «звезда» и «треугольник».

    Трехфазные асинхронные двигатели занимают значительную часть среди потребителей электроэнергии благодаря своим очевидным достоинствам.

    Реверсивная и не реверсивная схема магнитного пускателя

    Что такое магнитный пускатель – это коммутационный аппарат, предназначенный для автоматического включения и отключения потребителей электроэнергии многократно таких, как электрокотел, электра тэна, электродвигатель и т. п.

    Магнитный пускатель позволяет осуществить дистанционное управление, включать и отключать потребителя на расстоянии с пульта управления. Самое распространенное применение магнитного пускателя получили асинхронные двигателя, при помощи его осуществляется пуск, стоп и реверс (смена направления вращение вала) двигателя.

    Еще магнитный пускатель служит для разгрузки маломощных контактов. Например, возьмем простой выключатель, который стоит дома, он рассчитан включать и отключать нагрузку не более 10 Ампер, определяем мощность: ток умножаем на напряжение 10*220 = 2200 Вт. Это значит, что через этот выключатель, можно, включить не более двадцати двух лампочек мощностью 100Вт.

    Разгрузим контакт простого выключателя с помощью магнитного пускателя третьей величины, у которого силовые контакты рассчитаны включать и отключать ток 40 Ампер, мощность, которую он сможет включать и отключать: 40*220 = 8800 Вт. В итоге сможем одним щелчком выключателя, включать и отключать всю алею уличного освещения через контакты магнитного пускателя.

    Управляется магнитный пускатель третьей величины с помощью электромагнитной катушки, которая потребляет 200Вт в момент срабатывания, а в сработанном состоянии потребляет всего 25Вт, что получается 200/380 = 0,52 А — это ток которым необходим, чтобы пускатель сработал и включил основную силовую цепь. Теперь представьте, что можно поставить маленький компактный выключатель, который будет управлять магнитным пускателем, а он своими силовыми контактами будет включать и отключать большие мощности.

    Еще у магнитного пускателя катушки управления бывают на напряжения 380В, 220В и 36В в целях безопасности человека от поражения электрическим током. На токарных станках устанавливают магнитные пускатели с катушками на 36В. Это необходимо, для того чтобы на пульте управление токарным станком было безопасное напряжение, на случай пробоя изоляции.

    Для чего нужно тепловое реле в комплекте с магнитным пускателем. Тепловое реле защищает двигатель от перегруза и от неполнофазного режима работы. Что такое неполнофазный режим – это когда при работе электродвигателя исчезла одна из трех фаз.

    Причины однофазного режима: перегорела плавкая вставка на одной фазе, подгорел контакт на клемме или выкрутился винт на клеммнике магнитного пускателя и выпал фазный провод от вибрации, плохой контакт на силовых контактах пускателя.

    При перегрузке двигателя или работе в неполнофазном режиме увеличивается ток, проходящий через тепловое реле. В тепловом реле нагреваются токопроводящие биметаллические пластины, под действием тепла они выгибаются, и механически воздействует на размыкание контакта в тепловом реле, который отключает питание катушки магнитного пускателя, происходит отключение двигателя по средствам пускателя.

    СЕМА ПОДКЛЮЧЕНИЕ АСИНХРОННОГО ДВИГАТЕЛЯ ЧЕРЕЗ МАГНИТНЫЙ ПУСКАТЕЛЬ.

    Схема состоит:
    из QF — автоматического выключателя; KM1 — магнитного пускателя; P — теплового реле; M — асинхронного двигателя; ПР — предохранителя; кнопки управления (С-стоп, Пуск). Рассмотрим работу схемы в динамике.
    Включаем питание QF — автоматическим выключателем, нажимаем кнопку «Пуск» своим нормально разомкнутым контактом подает напряжение на катушку КМ1 — магнитного пускателя.

    КМ1 – магнитный пускатель срабатывает и своими нормально разомкнутыми, силовыми контактами подает напряжение на двигатель. Для того чтобы не удерживать кнопку «Пуск», чтобы двигатель работал, нужно ее зашунтировать, нормально разомкнутым блок контактом КМ1 – магнитного пускателя.
    При срабатывании пускателя блок контакт замыкается и можно отпустить кнопку «Пуск» ток побежит через блок контакт на КМ1 — катушку.

    Отключаем двигатель, нажимаем кнопу «С – стоп», нормально замкнутый контакт размыкается и прекращается подача напряжение к КМ1 – катушке, сердечник пускателя под действием пружин возвращается в исходное положение, соответственно контакты возвращаются в нормальное состояние, отключая двигатель. При срабатывании теплового реле — «Р», размыкается нормально замкнутый контакт «Р», отключение происходит аналогично.

    Не реверсивная схема магнитного пускателя с катушкой 380В.

    РЕВЕРСИВНАЯ СХЕМА МАГНИТНОГО ПУСКАТЕЛЯ.

    Схема состоит аналогично, так же, как на не реверсивной схеме, единственно добавилась кнопка реверса и магнитный пускатель.

    Принцип работы схемы немного сложнее, рассмотрим в динамике. Что требуется от схемы, реверс двигателя за счет переворачивания местами двух фаз. При этом нужна блокировка, которая не давала бы включиться второму пускателю, если первый находится в работе и наоборот. Если включить два пускателя одновременно то произойдет КЗ – короткое замыкание на силовых контактах пускателя.

    Включаем QF – автоматический выключатель, давим кнопку «Пуск[1]» подаем напряжение на КМ1 катушку пускателя, пускатель срабатывает. Силовыми контактами включает двигатель, при этом шунтируется пусковая кнопка «Пуск [1]».

    Блокировка второго пускателя — КМ2 осуществляется, нормально замкнутым КМ1 — блок контактом. При срабатывании КМ1 — пускателя, размыкается КМ1 — блок контакт тем самым размыкает подготовленную цепочку катушки второго КМ2 — магнитного пускателя.

    Чтобы осуществить реверс двигателя, его необходимо отключить. Отключаем двигатель, нажатием кнопку «С — стоп», снимается напряжение с катушки, которая находилась в работе. Пускатель и блок контакты под действием пружин возвращаются в исходное положение.

    Схема готова к реверсу, нажимаем кнопку «Пуск[2]», подаем напряжение на катушку — КМ2, пускатель — КМ2 срабатывает и включает двигатель в противоположном вращение. Кнопка «Пуск[2]» шунтируется блок контактом — КМ2, а нормально замкнутый блок контакт КМ2 размыкается и блокирует готовность катушки магнитного пускателя — КМ1.
    При срабатывании теплового реле — «Р», размыкается нормально замкнутый контакт «Р», отключение происходит аналогично.

    Реверсивная схема магнитного пускателя с катушкой 380В.

    Принцип работы схемы магнитного пускателя с катушкой на 220В тот же, что и с катушкой на 380В.

    Не реверсивная схема магнитного пускателя с катушкой 220В.

    Реверсивная схема магнитного пускателя с катушкой 220В.

    studvesna73.ru

    Схема подключения трехфазного электродвигателя | У электрика.ру

    Здравствуйте. Информацию по этой теме трудно не найти, но я постараюсь сделать данную статью наиболее полной. Речь пойдет о такой теме, как схема подключения трехфазного двигателя на 220 вольт и схема подключения трехфазного двигателя на 380 вольт.

    Для начала немного разберемся, что такое три фазы и для чего они нужны.  В обычной жизни три фазы нужны только для того, чтобы не прокладывать по квартире или по дому провода большого сечения. Но когда речь идет о двигателях, то здесь три фазы нужны для создания кругового магнитного поля и как результат, более высокого КПД. Двигатели бывают синхронные и асинхронные. Если очень грубо, то синхронные двигатели имеют большой пусковой момент и возможность плавной регулировки оборотов, но более сложные в изготовлении.  Там, где эти характеристики не нужны, получили распространение асинхронные двигатели. Нижеизложенный материал подходит для обоих типов двигателей, но в бóльшей степени относится к асинхронным.

    Что нужно знать о двигателе? На всех моторах есть шильдики с информацией, где указаны основные характеристики двигателя. Как правило, двигатели выпускаются сразу на два напряжения. Хотя если у вас двигатель на одно напряжение, то при сильном желании его можно переделать на два. Это возможно из-за конструктивной особенности. Все асинхронные двигатели имеют минимум три обмотки. Начала и концы этих обмоток выводятся в коробку БРНО (блок расключения (или распределения) начал обмоток) и в неё же, как правило, вкладывается паспорт двигателя:

    Если двигатель на два напряжения, то в БРНО будет шесть выводов. Если двигатель на одно напряжение, то вывода будет три, а остальные выводы расключены и находятся внутри двигателя. Как их оттуда «достать» в этой статье мы рассматривать не будем.

    Итак, какие двигатели нам подойдут. Для включения трёхфазного двигателя на 220 вольт подойдут только те, где есть напряжение 220 вольт, а именно 127/220 или 220/380 вольт. Как я уже говорил, двигатель имеет три независимых обмотки и в зависимости от схемы соединения они способны работать на двух напряжениях. Схемы эти называются «треугольник» и «звезда»:

    Думаю, даже не нужно объяснять, почему они так называются. Нужно обратить внимание, что у обмоток есть начало и конец и это не просто слова. Если, к примеру, лампочке неважно, куда подключить фазу, а куда ноль, то в двигателе при неправильном подключении возникнет «короткое замыкание» магнитного потока. Сразу двигатель не сгорит, но как минимум не будет вращаться, как максимум потеряет 33% своей мощности, начнёт сильно греться и, в итоге, сгорит. В то же время, нет чёткого определения, что «вот это начало», а «вот это конец».  Тут речь идет скорее об однонаправленности обмоток. Дам небольшой пример.

    Представим, что у нас есть три трубки в некоем сосуде. Примем за начала этих трубок обозначения с заглавными буквами (A1, B1, C1), а за концы со строчными (a1, b1, c1) Теперь, если мы подадим воду в начала трубок, то вода закрутится по часовой стрелке, а если в концы трубок, то против часовой. Ключевое слово здесь «примем». То есть, от того назовём мы три однонаправленных вывода обмотки началом или концом меняется только направление вращения.

    А вот такая картина будет, если мы перепутаем начало и конец одной из обмоток, а точнее не начало и конец, а направление обмотки. Эта обмотка начнёт работать «против течения». В итоге, неважно, какой именно вывод мы называем началом, а какой концом, важно, чтобы при подаче фаз на концы или начала обмоток не произошло замыкания магнитных потоков, создаваемых обмотками, то есть, совпало направление обмоток, или ещё точнее, направление магнитных потоков, которые создают обмотки.

    В идеале, для трёхфазного двигателя желательно использовать три фазы, потому что конденсаторное включение в однофазную сеть даёт потерю мощности порядка 30%.

    Ну, а теперь непосредственно к практике. Смотрим на шильдик двигателя. Если напряжение на двигателе 127/220 вольт, то схема соединения будет «звезда», если 220/380 – «треугольник». Если напряжения другие, например, 380/660, то для включения двигателя в сеть 220 вольт такой двигатель не подойдет. Точнее, двигатель напряжением 380/660 можно включить, но потери мощности здесь уже будут более 70%. Как правило, на внутренней стороне крышки коробки БРНО указано, как надо соединить выводы двигателя, чтобы получить нужную схему. Посмотрите ещё раз внимательно на схему соединения:

    Что мы здесь видим: при включении треугольником напряжение 220 вольт подаётся на одну обмотку, а при включении звездой — 380 вольт подаётся на две последовательно соединённых обмотки, что в результате даёт те же 220 вольт на одну обмотку. Именно за счёт этого и появляется возможность использовать для одного двигателя сразу два напряжения.

    Существует два метода включения трехфазного двигателя в однофазную сеть.

    1. Использовать частотный преобразователь, который преобразует одну фазу 220 вольт в три фазы 220 вольт (в этой статье мы рассматривать такой метод не будем)
    2. Использовать конденсаторы (этот метод мы и рассмотрим более подробно).

    Схема включения трехфазного двигателя на 220 вольт

    Для этого нам потребуются конденсаторы, но не абы какие, а для переменного напряжения и номиналом не менее 300, а лучше 350 вольт и выше. Схема очень простая.

    А это более наглядная картинка:

    Как правило, используется два конденсатора (или два набора конденсаторов), которые условно называются пусковые и рабочие. Пусковой конденсатор используется только для старта и разгона двигателя, а рабочий включен постоянно и служит для формирования кругового магнитного поля. Для того, чтобы рассчитать ёмкость конденсатора применяются две формулы:

    Ток для расчёта мы возьмём с шильдика двигателя:

    Здесь, на шильдике мы видим через дробь несколько окошек: треугольник/звезда, 220/380V и 2,0/1,16А. То есть, если мы соединяем обмотки по схеме треугольник (первое значение дроби), то рабочее напряжение двигателя будет 220 вольт и ток 2,0 ампера. Осталось подставить в формулу:

    Ёмкость пусковых конденсаторов, как правило, берётся в 2-3 раза больше, здесь всё зависит от того, какая нагрузка находится на двигателе – чем больше нагрузка, тем больше нужно брать пусковых конденсаторов, чтобы двигатель запустился. Иногда для запуска хватает и рабочих конденсаторов, но это обычно случается, когда нагрузка на валу двигателя мала.

    Чаще всего, на пусковые конденсаторы ставят кнопку, которую нажимают в момент запуска, а после того, как двигатель набирает обороты, отпускают. Наиболее продвинутые мастера ставят полуавтоматические системы запуска на основе реле тока или таймера.

    Есть ещё один способ определения ёмкости, чтобы получилась схема включения трёхфазного двигателя на 220 вольт. Для этого потребуется два вольтметра. Как вы помните, из закона Ома, сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению. Сопротивление двигателя можно считать константой, следовательно, если мы создадим равные напряжения на обмотках двигателя, то автоматически получим требуемое круговое поле. Схема выглядит так:

    Суть метода, как я уже говорил, заключается в том, чтобы показания вольтметра V1 и вольтметра V2 были одинаковые. Добиваются равенства показаний изменением номинала ёмкости «Cраб»

    Подключение трехфазного двигателя на 380 вольт

    Здесь вообще нет ничего сложного. Есть три фазы, есть три вывода двигателя и рубильник. Нулевую точку (где соединяются три обмотки, началами или концами – как я уже говорил выше, абсолютно неважно, как мы назовём выводы обмоток) при схеме соединения обмоток звездой, подключать к нулевому проводу не надо. То есть, для включения трехфазного двигателя в трехфазную сеть 380 вольт (если двигатель 220/380) нужно соединить обмотки по схеме звезда, и подать на двигатель только три провода с тремя фазами. А если двигатель 380/660 вольт, то схема соединения обмоток будет треугольник, ну а там точно нулевой провод некуда подключать.

    Смена направления вращения вала трехфазного двигателя

    Независимо от того, будет это конденсаторная схема включения или полноценная трехфазная, для смены вращения вала нужно поменять местами две любые обмотки. Другими словами поменять местами два любых провода.

    На чём хочется остановиться более подробно. Когда мы считали ёмкость рабочего конденсатора, то мы использовали номинальный ток двигателя. Проще говоря, такой ток в двигателе будет только тогда, когда он будет полностью нагружен. Чем меньше нагружен двигатель, тем меньше будет ток, поэтому ёмкость рабочего конденсатора, полученная по этой формуле будет МАКСИМАЛЬНО ВОЗМОЖНОЙ ёмкостью для данного двигателя. Чем плохо использовать максимальную емкость для недогруженного двигателя – это вызывает повышенный нагрев обмоток. В общем, чем-то приходится жертвовать: маленькая ёмкость не даёт двигателю набрать полную мощность, большая ёмкость при недогрузке вызывает повышенный нагрев. Обычно в этом случае я предлагаю такой выход – сделать рабочие конденсаторы из четырёх одинаковых конденсаторов с переключателем или набором переключателей (что будет доступнее). Допустим, мы посчитали ёмкость 40 мкФ. Значит, для работы нам надо использовать 4 конденсатора по 10 мкФ (или три конденсатора 10, 10 и 20 мкФ) и в зависимости от нагрузки использовать 10, 20, 30 или 40 мкФ.

    Ещё один момент по пусковым конденсаторам. Конденсаторы для переменного напряжения стоят гораздо дороже конденсаторов для постоянного. Использовать конденсаторы для постоянного напряжения в сетях с переменным, крайне не рекомендуется по причине того, что конденсаторы взрываются. Однако, для двигателей существует специальная серия конденсаторов Starter, предназначенная именно для работы, как пусковые. Использовать конденсаторы серии Starter в качестве рабочих тоже запрещено.

    И в завершение нужно отметить такой момент – добиваться идеальных значений нет смысла, поскольку это возможно только, если нагрузка будет стабильной, например, если двигатель будет использоваться в качестве вытяжки.  Погрешность в 30-40% это нормально. Другими словами, конденсаторы надо подбирать так, чтобы был запас по мощности в 30-40%.

     

    Поделиться ссылкой:

    Похожее

    uelektrika.ru

    Подключение трехфазного двигателя

    Подключение трехфазного двигателя к трехфазной сети

    Работа трехфазных электродвигателей считается гораздо более эффективной и производительной, чем однофазных двигателей, рассчитанных на 220 В. Поэтому при наличии трех фаз, рекомендуется подключать соответствующее трехфазное оборудование. В результате, подключение трехфазного двигателя к трехфазной сети обеспечивает не только экономичную, но и стабильную работу устройства. В схему подключения не требуется добавление каких-либо пусковых устройств, поскольку сразу же после запуска двигателя, в обмотках его статора образуется магнитное поле. Основным условием нормальной эксплуатации таких устройств является правильное выполнение подключения и соблюдение всех рекомендаций.

    Схемы подключения

    Магнитное поле, создаваемое тремя обмотками, обеспечивает вращение ротора электродвигателя. Таким образом, электрическая энергия преобразуется в механическую.

    Подключение может выполняться двумя основными способами – звездой или треугольником. Каждый из них имеет свои достоинства и недостатки. Схема звезды обеспечивает более плавный пуск агрегата, однако мощность двигателя падает примерно на 30% от номинальной. В этом случае подключение треугольником имеет определенные преимущества, поскольку потеря мощности отсутствует. Тем не менее, здесь тоже есть своя особенность, связанная с токовой нагрузкой, которая резко возрастает во время пуска. Подобное состояние оказывает негативное влияние на изоляцию проводов. Изоляция может быть пробита, а двигатель полностью выходит из строя.

    Особое внимание следует уделить европейскому оборудованию, укомплектованному электродвигателями, рассчитанными на напряжения 400/690 В. Они рекомендованы к подключению в наши сети 380 вольт только методом треугольника. В случае подключения звездой, такие двигатели сразу же сгорают под нагрузкой. Данный метод применим только к отечественным трехфазным электрическим двигателям.

    В современных агрегатах имеется коробка подключения, в которую выводятся концы обмоток. Их количество может составлять три или шесть. В первом случае схема подключения изначально предполагается методом звезды. Во втором случае электродвигатель может включаться в трехфазную сеть обоими способами. То есть, при схеме звезда три конца, расположенные в начале обмоток соединяются в общую скрутку. Противоположные концы подключаются к фазам сети 380 В, от которой поступает питание. При варианте треугольник все концы обмоток последовательно соединяются между собой. Подключение фаз осуществляется к трем точкам, в которых концы обмоток соединяются между собой.

    Использование схемы «звезда-треугольник»

    Сравнительно редко используется комбинированная схема подключения, известная как «звезда-треугольник». Она позволяет производить плавный пуск при схеме звезда, а в процессе основной работы включается треугольник, обеспечивающий максимальную мощность агрегата.

    Данная схема подключения довольно сложная, требующая использования сразу трех магнитных пускателей, устанавливаемых в соединения обмоток. Первый МП включается в сеть и с концами обмоток. МП-2 и МП-3 соединяются с противоположными концами обмоток. Подключение треугольником выполняется ко второму пускателю, а подключение звездой – к третьему. Категорически запрещается одновременное включение второго и третьего пускателей. Это приведет к короткому замыканию между фазами, подключенными к ним. Для предотвращения подобных ситуаций между этими пускателями устанавливается блокировка. Когда включается один МП, у другого происходит размыкание контактов.

    Работа всей системы происходит по следующему принципу: одновременно с включением МП-1, включается МП-3, подключенный звездой. После плавного пуска двигателя, через определенный промежуток времени, задаваемый реле, происходит переход в обычный рабочий режим. Далее происходит отключение МП-3 и включение МП-2 по схеме треугольника.

    Трехфазный двигатель с магнитным пускателем

    Подключение трехфазного двигателя с помощью магнитного пускателя, осуществляется также, как и через автоматический выключатель. Просто эта схема дополняется блоком включения и выключения с соответствующими кнопками ПУСК и СТОП.

    Одна нормально замкнутая фаза, подключенная к двигателю, соединяется с кнопкой ПУСК. Во время нажатия происходит смыкание контактов, после чего ток поступает к двигателю. Однако, следует учесть, что в случае отпускания кнопки ПУСК, контакты окажутся разомкнутыми и питание поступать не будет. Чтобы не допустить этого, магнитный пускатель оборудуется еще одним дополнительным контактным разъемом, так называемым контактом самоподхвата. Он выполняет функцию блокировочного элемента и препятствует разрыву цепи при выключенной кнопке ПУСК. Окончательно разъединить цепь можно только с помощью кнопки СТОП.

    Таким образом, подключение трехфазного двигателя к трехфазной сети может быть выполнено различными способами. Каждый из них выбирается в соответствии с моделью агрегата и конкретными условиями эксплуатации.

    Подключение трехфазного двигателя к однофазной сети

    Довольно часто возникает необходимость в нестандартном подключении какого-либо электроприбора, применительно к конкретным условиям. Среди возможных вариантов следует выделить подключение трехфазного двигателя к однофазной сети, широко применяемое в бытовых условиях. Данная схема вполне оправдывает себя, несмотря на некоторое снижение мощности подключаемого оборудования.

    Подключение трехфазного двигателя к однофазной сети через конденсатор

    Подключить трехфазный двигатель к сети с напряжением 220 вольт довольно просто. В стандартной ситуации, в каждой фазе имеется собственная синусоида. Между ними существует фазовый сдвиг, составляющий 120 градусов. За счет этого обеспечивается плавное вращение в статоре электромагнитного поля.

    Каждая волна обладает амплитудой 220 вольт, что и дает возможность подключения трехфазного двигателя к обычной сети. Получение трех синусоид из одной фазы происходит с помощью обычного конденсатора, при условии соединения обмоток двигателя треугольником. Объединенные в единое кольцо, они позволяют получать сдвиг по фазе в 45 и 90 градусов, вполне достаточный для не слишком активной работы вала.

    Применение конденсатора позволяет достичь мощности двигателя при одной фазе примерно 50-60% от этого же показателя для трех фаз. Однако данная схема подходит не ко всем электродвигателям, поэтому следует выбирать наиболее подходящую модель, например, серии АПН, АО, А, АО2 и другие.

    Одним из условий использования конденсатора является необходимость изменения его емкости в соответствии с количеством оборотов. Практическое выполнение этого условия представляет серьезную проблему, поэтому управление двигателем выполняется в двухступенчатом варианте. Во время запуска подключается сразу два конденсатора, один из которых отключается после разгона. Остается только рабочий, продолжающий функционировать.

    Как подобрать конденсатор для трехфазного двигателя

    Пусковой конденсатор должен примерно в 2-2,5 раза превышать емкость рабочего конденсатора. Расчетное напряжение этих устройств обычно в 1,5 раза превышает напряжение сети. Для сетей 220 вольт наилучшим вариантом будут конденсаторы МБПГ, МБГО, МБГЧ, рабочее напряжение которых составляет 500 вольт и более. Если конденсаторы включаются лишь на короткое время, возможно применение в схеме электролитических устройств, таких как КЭ-2, К50-3, ЭГЦ-М с минимальным напряжением 450 вольт.

    Между собой конденсаторы соединяются последовательно, через минусовые выводы. Далее в схему добавляется резистор, сопротивлением 200-300 Ом, убирающий оставшийся электрический заряд с конденсаторов.

    Расчёт конденсатора для трёхфазного двигателя

    Нормальная работа трехфазного электродвигателя с пуском через конденсатор зависит от ряда условий. Одним из них является изменение емкости устройства в соответствии с числом оборотов двигателя. Это достигается за счет двухступенчатого управления, состоящего из двух конденсаторов – пускового и рабочего.

    Во время пуска происходит замыкание контактов, после чего нажимается кнопка разгона. После того как набрано достаточное количество оборотов, кнопку следует отпустить. Рассчитать емкость рабочего конденсатора можно по следующей формуле: Ср = 4800х I/U, где Ср является емкостью устройства в мкФ, I – сила тока, потребляемого двигателем в амперах, U – напряжение электрической сети в вольтах. Данная формула подходит при соединении обмоток двигателя методом треугольника. Если же обмотки двигателя соединены звездой, применяется формула Ср = 2800х I/U.

    Таким образом, подключение трехфазного двигателя к однофазной сети имеет свои особенности. Например, емкость пускового и рабочего конденсатора должна соответствовать мощности подключаемого двигателя.

    Конструкция трехфазного электродвигателя представляет собой электрическую машину, для нормальной работы которой необходимы трехфазные сети переменного тока. Основными частями такого устройства являются статор и ротор. Статор оборудован тремя обмотками, сдвинутыми между собой на 120 градусов. Когда в обмотках появляется трехфазное напряжение, на их полюсах происходит образование магнитных потоков. За счет этих потоков, ротор двигателя начинает вращаться.

    Соединение звездой и треугольником обмоток электродвигателя

    В промышленном производстве и в быту практикуется широкое применение трехфазных асинхронных двигателей. Они могут быть односкоростными, когда производится соединение звездой и треугольником обмоток электродвигателя или многоскоростными, с возможностью переключения с одной схемы на другую.

    Соединение обмоток звездой и треугольником

    У всех трехфазных электродвигателей обмотки соединяются по схеме звезды или треугольника.

    При подключении обмоток по схема звезда, их концы соединяются в одной точке в нулевом узле. Поэтому, получается еще один дополнительный нулевой вывод. Другие концы обмоток соединяются с фазами сети 380 В.

    Соединение треугольником заключается в последовательном соединении обмоток. Конец первой обмотки соединяется с начальным концом второй обмотки и так далее. В конечном итоге, конец третьей обмотки, соединится с началом первой обмотки. Подача трехфазного напряжения осуществляется в каждый узел соединения. Подключение по схеме треугольник отличается отсутствием нулевого провода.

    Оба вида соединений получили примерно одинаковое распространение и не имеют между собой значительных отличительных особенностей.

    Существует и комбинированное подключение, когда используются оба варианта. Такой способ применяется достаточно часто, его целью является плавный запуск электродвигателя, которого не всегда можно добиться при обычных подключениях. В момент непосредственного пуска, обмотки находятся в положении звезда. Далее, используется реле, которое обеспечивает переключение в положение треугольника. За счет этого происходит уменьшение пускового тока. Комбинированная схема, чаще всего, применяется во время пуска электродвигателей, обладающих большой мощностью. Для таких двигателей требуется и значительно больший пусковой ток, превышающий номинальное значение примерно в семь раз.

    Электродвигатели могут подключаться и другими способами, когда применяется двойная или тройная звезда. Такие подключения используются для двигателей с двумя и более регулируемыми скоростями.

    Запуск трехфазного электродвигателя с переключением со звезды на треугольник

    Данный способ применяется для того, чтобы снизить пусковой ток, который может примерно в 5-7 раз превышать номинальный ток электродвигателя. Агрегаты со слишком большой мощностью имеют такой пусковой ток, при котором легко перегорают предохранители, отключаются автоматы и, целом, значительно понижается напряжение. При таком уменьшении напряжения снижается накаливание ламп, происходит снижение вращающего момента других электродвигателей, самопроизвольно отключаются магнитные пускатели и контакторы. Поэтому, применяются разные способы, с целью уменьшения пускового тока.

    Общим для всех способов является необходимость снижения напряжения в обмотках статора на время непосредственного пуска. Чтобы уменьшить пусковой ток, цепь статора на время пуска может дополняться дросселем, реостатом или автоматическим трансформатором.

    Наибольшее распространение получило переключение обмотки из звезды в положение треугольника. В положении звезды напряжение становится в 1,73 раза меньше, чем номинальное, поэтому и ток будет меньше, чем при полном напряжении. Во время пуска частота вращения электродвигателя увеличивается, происходит снижение тока и обмотки переключаются в положение треугольника.

    Такое переключение допускается в электродвигателях, имеющих облегченный режим пуска, так как происходит снижение пускового момента, примерно в два раза. Данным способом переключаются те двигатели, которые конструктивно могут соединяться в треугольник. У них должны быть обмотки, способные работать при линейном напряжении сети.

    Когда нужно переключаться с треугольника в звезду

    Когда необходимо выполнить соединение звездой и треугольником обмоток электродвигателя, следует помнить о возможности переключения с одного вида на другой. Основным вариантом является схема переключения звезда треугольник. Однако, при необходимости, возможен и обратный вариант.

    Всем известно, что у электродвигателей, загруженных не полностью, происходит снижение коэффициента мощности. Поэтому, такие двигатели желательно заменять устройствами с меньшей мощностью. Однако, при невозможности замены и большом запасе мощности, производится переключение треугольник-звезда. Ток в цепи статора не должен превышать номинала, иначе произойдет перегрев электродвигателя.

    pkdemo.ru

    Отправить ответ

    avatar
      Подписаться  
    Уведомление о